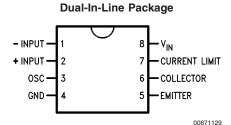


LM2578A/LM3578A Switching Regulator General Description

The LM2578A is a switching regulator which can easily be set up for such DC-to-DC voltage conversion circuits as the buck, boost, and inverting configurations. The LM2578A features a unique comparator input stage which not only has separate pins for both the inverting and non-inverting inputs, but also provides an internal 1.0V reference to each input, thereby simplifying circuit design and p.c. board layout. The output can switch up to 750 mA and has output pins for its collector and emitter to promote design flexibility. An external current limit terminal may be referenced to either the ground or the V_{in} terminal, depending upon the application. In addition, the LM2578A has an on board oscillator, which sets the switching frequency with a single external capacitor from <1 Hz to 100 kHz (typical).

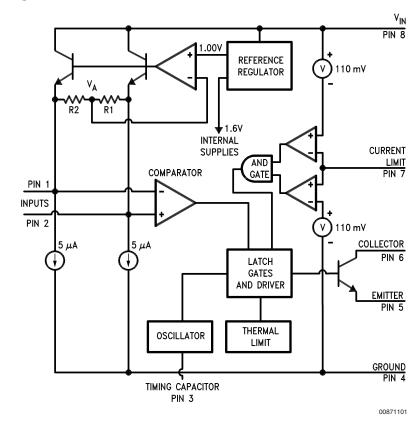
The LM2578A is an improved version of the LM2578, offering higher maximum ratings for the total supply voltage and output transistor emitter and collector voltages.


Features

- Inverting and non-inverting feedback inputs
- 1.0V reference at inputs
- Operates from supply voltages of 2V to 40V
- Output current up to 750 mA, saturation less than 0.9V
- Current limit and thermal shut down
- Duty cycle up to 90%

Applications

- Switching regulators in buck, boost, inverting, and single-ended transformer configurations
- Motor speed control
- Lamp flasher


Connection Diagram and Ordering Information

Order Number LM3578AM, LM2578AN or LM3578AN See NS Package Number M08A or N08E

LM2578A/LM3578A

Functional Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Total Supply Voltage	50V
Collector Output to Ground	-0.3V to +50V
Emitter Output to Ground (Note 2)	-1V to +50V
Power Dissipation (Note 3)	Internally limited
Output Current	750 mA
Storage Temperature	–65°C to +150°C
Lead Temperature	
(soldering, 10 seconds)	260°C
Maximum Junction Temperature	150°C

ESD Tolerance (Note 4)

Operating Ratings

Ambient Temperature Range	
LM2578A	$-40^{\circ}C \le T_{A}$
	≤+85°C
LM3578A	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$
Junction Temperature Range	
LM2578A	$-40^{\circ}C \le T_{J}$
	≤+125°C
LM3578A	$0^{\circ}C \leq T_{J} \leq +125^{\circ}C$

Electrical Characteristics

These specifications apply for $2V \le V_{IN} \le 40V$ ($2.2V \le V_{IN} \le 40V$ for $T_J \le -25^{\circ}C$), timing capacitor $C_T = 3900$ pF, and $25\% \le duty$ cycle $\le 75\%$, unless otherwise specified. Values in standard typeface are for $T_J = 25^{\circ}C$; values in **boldface type** apply for operation over the specified operating junction temperature range.

Symbol	Parameter	Conditions		LM2578A/ LM3578A Limit (Note 6)	Units
			Typical		
			(Note 5)		
OSCILLATO	DR				1
f _{osc}	Frequency		20		kHz
				24	kHz (max)
				16	kHz (min)
$\Delta f_{OSC} / \Delta T$	Frequency Drift with Temperature		-0.13		%/°C
	Amplitude		550		mV _{p-p}
REFERENC	E/COMPARATOR (Note 7)			•	
V _R	Input Reference	$I_1 = I_2 = 0$ mA and	1.0		V
	Voltage	I ₁ = I ₂ = 1 mA ±1% (Note 8)		1.050/ 1.070	V (max)
				0.950/ 0.930	V (min)
$\Delta V_{\rm R} / \Delta V_{\rm IN}$	Input Reference Voltage Line Regulation	$I_1 = I_2 = 0$ mA and	0.003		%/V
		I ₁ = I ₂ = 1 mA ±1% (Note 8)		0.01/ 0.02	%/V (max)
I _{INV}	Inverting Input Current	$I_1 = I_2 = 0$ mA, duty cycle = 25%	0.5		μA
	Level Shift Accuracy	Level Shift Current = 1 mA	1.0		%
				10/ 13	% (max)
$\Delta V_{R}/\Delta t$	Input Reference Voltage Long Term Stability		100		ppm/1000h
OUTPUT	L			1	1
V _C (sat)	Collector Saturation Voltage	I _C = 750 mA pulsed, Emitter	0.7		V
		grounded		0.90/1.2	V (max)
V _E (sat)	Emitter Saturation Voltage	I _O = 80 mA pulsed,	1.4		V
2 ()		$V_{IN} = V_C = 40V$		1.7/ 2.0	V (max)
I _{CES}	Collector Leakage Current	$V_{IN} = V_{CE} = 40V$, Emitter grounded,	0.1		μA
	_	Output OFF		200/ 250	µA (max)
BV _{CEO(SUS)}	Collector-Emitter Sustaining Voltage	$I_{SUST} = 0.2A$ (pulsed), $V_{IN} = 0$	60		V
				50	V (min)
CURRENT L	LIMIT			1	
V _{CL}	Sense Voltage Shutdown Level	Referred to V _{IN} or Ground	110		mV
		(Note 9)		80	mV (min)
				160	mV (max)

Electrical Characteristics (Continued)

These specifications apply for $2V \le V_{IN} \le 40V$ (2.2V $\le V_{IN} \le 40V$ for $T_J \le -25^{\circ}C$), timing capacitor $C_T = 3900$ pF, and $25\% \le duty$ cycle $\le 75\%$, unless otherwise specified. Values in standard typeface are for $T_J = 25^{\circ}C$; values in **boldface type** apply for operation over the specified operating junction temperature range.

Symbol	Parameter	Conditions	Typical	LM2578A/ LM3578A	Units
			(Note 5)	Limit (Note 6)	
CURRENT L	IMIT				
$\Delta V_{CL} / \Delta T$	Sense Voltage Temperature Drift		0.3		%/°C
I _{CL} Sense Bias Current	Referred to V _{IN}	4.0		μA	
		Referred to ground	0.4		μA
DEVICE PO\	VER CONSUMPTION			-	
I _S Supply Current	Supply Current	Output OFF, $V_E = 0V$	2.0		mA
				3.5/ 4.0	mA (max)
		Output ON, $I_C = 750$ mA pulsed, $V_E = 0V$	14		mA

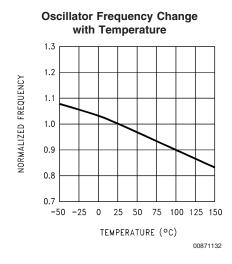
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

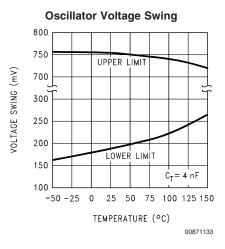
Note 2: For $T_J \ge 100^{\circ}$ C, the Emitter pin voltage should not be driven more than 0.6V below ground (see Application Information).

Note 3: At elevated temperatures, devices must be derated based on package thermal resistance. The device in the 8-pin DIP must be derated at 95°C/W, junction to ambient. The device in the surface-mount package must be derated at 150°C/W, junction-to-ambient.

Note 4: Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

Note 5: Typical values are for $T_J = 25^{\circ}C$ and represent the most likely parametric norm.


Note 6: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). Room temperature limits are 100% production tested. Limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate AOQL.


Note 7: Input terminals are protected from accidental shorts to ground but if external voltages higher than the reference voltage are applied, excessive current will flow and should be limited to less than 5 mA.

Note 8: I1 and I2 are the external sink currents at the inputs (refer to Test Circuit).

Note 9: Connection of a 10 k Ω resistor from pin 1 to pin 4 will drive the duty cycle to its maximum, typically 90%. Applying the minimum Current Limit Sense Voltage to pin 7 will not reduce the duty cycle to less than 50%. Applying the maximum Current Limit Sense Voltage to pin 7 is certain to reduce the duty cycle below 50%. Increasing this voltage by 15 mV may be required to reduce the duty cycle to 0%, when the Collector output swing is 40V or greater (see Ground-Referred Current Limit Sense Voltage typical curve).

Typical Performance Characteristics

